Two New Diterpenes from Solidago canadensis

by Zhi-Xin Zeng^a)^b)¹), Wen-Hui Ma^a)^c)¹), Yong-Le Li^c), Ting Han^a), Cheng-Jian Zheng^a), and Lu-Ping Qin^{*a})

^a) Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China (phone/fax: +86-21-81871300; e-mail: qinsmmu@126.com)

^b) Hunan Forest Botanical Garden, Changsha 410116, P. R. China

^c) Microscreen Biotechnology Co., Ltd., Shanghai 201203, P. R. China

Two new clerodane-type diterpenes, solidagocanins A and B (1 and 2, resp.), as well as two known compounds, mellein (3) and physicon (4), were isolated from the aerial parts of *Solidago canadensis*. The structures of the new compounds were elucidated by spectroscopic analyses, including 2D-NMR techniques.

Introduction. – Diterpenes and polyacetylenes are common constituents in members of the tribe Astereae [1-5]. In recent years, a large number of reports have appeared dealing with the biological activities of these compounds. Diterpenes exhibit insect-antifeedant, antifungal, antibacterial, and antiviral activities [3][6]. In the course of searching for the new bioactive natural products from the Asteraceae plants, two new clerodane-type diterpenoids, solidagocanins A and B²) (1 and 2, resp.), as well as two known compounds, mellein (3) and physicion (4), were isolated from the aerial parts of *Solidago canadensis*. This article describes the isolation and structure elucidation of the new compounds.

Results and Discussion. – Repeated column chromatography of the AcOEt extract from the aerial parts of *S. canadensis* yielded compounds 1-4.

¹) These two authors have contributed equally to this work.

2) Trivial atom numbering; for systematic names, see Exper. Part.

© 2012 Verlag Helvetica Chimica Acta AG, Zürich

Solidagocanin A^2 (1) was obtained as a white powder and assigned to possess a molecular formula $C_{25}H_{38}O_4$ on the basis of the HR-ESI-MS (m/z 403.2835 (M + H^{+}), which indicated seven degrees of unsaturation. The ¹H-NMR spectrum (*Table 1*) showed two secondary Me groups (δ (H) 0.85 (d, J = 6.4 Hz) and 1.78 (d, J = 7.0 Hz) and five tertiary Me groups ($\delta(\text{H})$ 1.05, 1.25, 1.54, 1.79, and 2.20 (5s)). As determined by a DEPT experiment, the down-field ¹³C-NMR signals (Table 2) corresponded to two C=O groups (δ (C) 172.3 and 167.6), six olefinic C-atoms (δ (C) 115.0, 124.2, 129.1, 136.8, 138.2, and 164.3), and one O-bearing C-atom ($\delta(C)$ 74.4); the high-field region showed seven Me (δ (C) 12.2, 14.4, 15.4, 18.3, 19.5, 24.7, and 28.6), five CH_2 ($\delta(C)$ 21.8, 26.5, 31.5, 34.2, and 35.6), and two CH groups ($\delta(C)$ 31.9 and 44.4) as well as two quaternary C-atoms ($\delta(C)$ 38.5 and 42.9) (*Table 2*). The ¹H-NMR signals at δ (H) 6.79 (*m*, H–C(3')), 1.78 (*d*, J = 7.0 Hz Me(4')), and 1.79 (*s*, Me(5')), along with the corresponding ¹³C-NMR signals at δ (C) 167.6 (C(1')), 129.1 (C(2')), 136.8 (C(3')), 14.4 (C(4')), and 12.2 (C(5')) indicated the presence of a tiglovel (Tig) group [4]. The ¹H-NMR, ¹³C-NMR, and HMBC data (*Fig.*) of **1** suggested that **1** had the same constitution as (6β) -6-(tigloyloxy)kolavenic acid [4]. Comparison of the ¹³C-NMR spectra of **1** and (6β) -6-(tigloyloxy)kolavenic acid (*Table 2*) showed that they only differed in the configuration of the C=C bond at C(13). The configuration of this C=C bond was determined by NOESY experiments. H-C(14) and the Me(16) were transoriented in (6β) -6-(tigloyloxy)kolavenic acid [4]. However, the NOESY correlation between Me(16) and H-C(14) of 1 indicated that H-C(14) and the Me(16) were cisoriented (*Fig.*), similar to the situation in $(7\alpha, 13Z)$ -7-(acetyloxy)kolavenic acid [4]. Thus, the structure of 1 was elucidated as shown in the Figure, and it was named solidagocanin A.

H-Atom	1	2
CH ₂ (1)	1.33-1.42, 1.94-2.03 (2 <i>m</i>)	1.31 - 1.41, 1.90 - 2.00 (2m)
$CH_2(2)$	1.89 - 2.08 (m)	1.83 - 2.02 (m)
H–C(3)	5.49 (br. <i>s</i>)	5.47 (br. <i>s</i>)
H–C(6)	4.98 (br. <i>s</i>)	5.01 (br. <i>s</i>)
$CH_{2}(7)$	1.55 - 1.63, 1.75 - 1.84 (2m)	1.50 - 1.60, 1.75 - 1.85 (2m)
H–C(8)	1.88 - 1.96 (m)	1.83 - 1.91 (m)
H-C(10)	1.51 - 1.58 (m)	1.46 - 1.54 (m)
CH ₂ (11)	1.63 - 1.70, 1.82 - 1.90 (2m)	1.58 - 1.66, 1.77 - 1.86 (2m)
CH ₂ (12)	2.02 - 2.12, 2.22 - 2.32 (2m)	2.00-2.10, 2.20-2.30 (2m)
H–C(14)	5.71 (s)	5.69 (s)
Me(16)	2.20(s)	2.18(s)
Me(17)	0.85 (d, J = 6.4, 3 H)	0.83 (d, J = 6.4)
Me(18)	1.05(s)	1.02(s)
Me(19)	1.25(s)	1.24(s)
Me(20)	1.54(s)	1.54(s)
H–C(3')	6.79 (<i>m</i>)	5.97 (<i>m</i>)
Me(4')	1.78 (d, J = 7.0)	1.96 (d, J = 7.0)
Me(5')	1.79 (s)	1.81 (s)

Table 1. ¹*H*-*NMR Data* (at 27°, CDCl₃, 400 MHz) of **1** and **2**²). δ in ppm, J in Hz.

C-Atom	1	(13Z)- 1	2
C(1)	34.2 <i>(t)</i>	34.6 (<i>t</i>)	34.2 (<i>t</i>)
C(2)	26.5(t)	26.5(t)	26.5(t)
C(3)	124.2(d)	124.2(d)	124.5(d)
C(4)	138.2(s)	138.2(s)	138.0 (s)
C(5)	42.9(s)	42.9(s)	42.9(s)
C(6)	74.4(d)	74.4(d)	74.0(d)
C(7)	31.5(t)	31.5(t)	31.6(t)
C(8)	31.9(d)	31.9(d)	31.9(d)
C(9)	38.5 (s)	38.5(s)	38.4(s)
C(10)	44.4(d)	44.4(d)	44.3(d)
C(11)	21.8(t)	21.8(t)	21.6(t)
C(12)	35.6(t)	35.5(t)	35.6 (<i>t</i>)
C(13)	164.3(s)	162.9(s)	164.2(s)
C(14)	115.0(d)	116.2(d)	115.0(d)
C(15)	172.3(s)	172.2(s)	172.0(s)
C(16)	19.5(q)	19.4(q)	19.5(q)
C(17)	15.4(q)	15.3(q)	15.4(q)
C(18)	28.6(q)	28.5(q)	28.6(q)
C(19)	24.7(q)	24.7(q)	24.7(q)
C(20)	18.3(q)	18.2(q)	18.3(q)
C(1')	167.6(s)	167.5(s)	167.1(s)
C(2')	129.1(s)	129.1 (s)	128.3(s)
C(3')	136.8(d)	136.7(d)	137.7(d)
C(4')	14.4(q)	14.3(q)	15.5(q)
C(5')	12.2(q)	12.1(q)	20.7(q)

Table 2. ¹³*C*-*NMR Data of* **1**, **2**, and (13Z)-**1** [4]^a)²). Recorded at 27°, CDCl₃, 100 MHz; δ in ppm.

^a) The known compound (13*Z*)-**1** was named (6 β)-6-(tigloyloxy)kolavenic acid (=(2*E*)-3-methyl-5-{(1*S*,2*R*,4*R*,4a*R*,8a*R*)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-4-{[(2*E*)-2-methyl-1-oxobut-2-en-1-yl]oxy}naphthalen-1-yl}pent-2-enoic acid).

Figure. Key HMBC $(H \mathop{\rightarrow} C)$ and NOESY $(H \mathop{\leftrightarrow} H)$ correlations in 1

Solidagocanin B²) (2), obtained as a white powder, had a molecular formula $C_{25}H_{38}O_4$ according to the HR-ESI-MS ($m/z 403.2832 ([M+H]^+)$). The NMR, IR, and UV of 2 were quite similar to those of 1, except for the characteristic signals due to an angeloyl (=(2Z)-2-methyl-1-oxobut-2-en-1-yl; Ang) group instead of the tigloyl (=(2E)-2-methyl-1-oxobut-2-en-1-yl; Tig) group in 1. The ¹H-NMR signals of 2 at δ (H) 5.97 (m, H–C(3')), 1.96 (d, J = 7.0 Hz, Me(4')), and 1.81 (s, Me(5')), along with

the corresponding ¹³C-NMR signals at $\delta(C)$ 167.1 (C(1')), 128.3 (C(2')), 137.7 (C(3')), 15.5 (C(4')) and 20.7 (C(5')) indicated the presence of an Ang group [4][7]. The HMBC between H–C(6) at $\delta(H)$ 5.01 and C(1') at $\delta(C)$ 167.1 suggested that the Ang group was located at C(6). The NOESY correlation between Me(16) and H–C(14) of **2** indicated that H–C(14) and Me(16) were *cis*-oriented as in **1**, but different from the configuration of (6 β)-6-(angeloyloxy)kolavenic acid [4].

The known compounds were identified as mellein (3) [8] and physcion (4) [9] by comparing their IR, UV, and NMR data with those reported in the literature.

Experimental Part

General. Column chromatography (CC): silica gel $(SiO_2, 200-300 \text{ or } 300-400 \text{ mesh}; Qingdao Marine Chemical Factory). Anal. TLC: silica-gel plates <math>(SiO_2; Yantai Institute of Chemical Technology)$; eluent petroleum ether/acetone 3:1; visualization under UV light, and by spraying with 10% aq. H₂SO₄ soln., followed by heating. Optical rotations (ORD): Jasco-P-1020 spectropolarimeter. UV Spectra: Shimadzu-UV-260 spectrophotometer; in anh. MeOH; λ_{max} (log ε) in nm. IR Spectra: Avatar-360-ESP spectrophotometer (Thermo Nicolet); KBr pellets; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: DRX-400 spectrometer; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-ESI-MS: Bruker-Apex-70-Tesla FT-MS apparatus; in m/z.

Plant Material. The aerial parts of *Solidago canadensis* L. were collected in Shanghai, P. R. China, in August 2006. A voucher specimen (Qin-Zeng200601) is deposited with the Herbarium of Materia Medica, School of Pharmacy, the Second Military Medical University, Shanghai, P. R. China.

Extraction and Isolation. The air-dried, aerial parts (20 kg) of *S. canadensis* were extracted exhaustively with 80% aq. EtOH at r.t. The EtOH extract was concentrated to yield a semi-solid (1424 g), which was suspended in H₂O (1000 ml), and extracted with AcOEt (3×600 ml). The combined AcOEt phase was concentrated to yield a residue (105 g), part of which (100 g) was subjected to CC (2 kg of SiO₂, petroleum ether/AcOEt gradient): *Fractions* 1-7. *Fr.* 5 (eluted with petroleum ether/AcOEt 3:1) was subjected to repeated CC (SiO₂; petroleum ether/AcOEt 4:1), and then to prep. TLC (petroleum ether/AcOEt 7:2): **1** (15 mg) and **2** (8 mg). *Fr.* 4 (eluted with petroleum ether/AcOEt 5:1), was subjected to repeated CC (SiO₂, petroleum ether/AcOEt 8:1): **3** (6 mg). *Fr.* 2 (eluted with petroleum ether/AcOEt 10:1) was subjected to repeated CC (SiO₂, petroleum ether/AcOEt 12:1), and then to prep. TLC (petroleum ether/acetone 20:1): **4** (4 mg).

Solidagocanin A (= (2Z)-3-Methyl-5-{(1S,2R,4R,4aR,8aR)-1,2,3,4,4a,78,8a-octahydro-1,2,4a,5-tetramethyl-4-{[(2E)-2-methyl-1-oxobut-2-en-1-yl]oxy}naphthalen-1-yl]pent-2-enoic Acid; **1**): White powder. $[\alpha]_{D}^{25} = +32$ (c = 0.05, MeOH). UV (MeOH): 219 (3.52). IR (KBr): 3441, 2967, 1700, 1694, 1636, 1437, 1256, 1156, 1072. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 403.2835 ([M + H]⁺, C₂₅H₃₉O₄⁺; calc. 403.2849).

Solidagocanin B (= (2Z)-3-Methyl-5-{(1S,2R,4R,4aR,8aR)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-4-{[(2Z)-2-methyl-1-oxo-but-2-en-1-yl]oxy}naphthalen-1-yl]pent-2-enoic Acid; **2**): White powder. $[\alpha]_D^{25} = +36$ (c = 0.05, MeOH). UV (MeOH): 218 (3.86). IR (KBr): 3429, 2967, 1710, 1690, 1639, 1438, 1385, 1232, 1158. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-ESI-MS: 403.2832 ([M + H]⁺, C₂₅H₃₉O₄⁺; calc. 403.2849).

REFERENCES

- [1] L.-P. Christensen, J. Lam, Phytochemistry 1991, 30, 2453.
- [2] F. Bohlmann, T. Burkhardt, C. Zdero, 'Naturally Occurring Acetylenes', Academic Press, London, 1973.
- [3] F. Seaman, F. Bohlmann, C. Zdero, T.-J. Mabry, 'Diterepenes of Flowering Plants, Compositae (Asteraceae)', Springer, New York, 1990.
- [4] T. Lu, M. A. Menelaou, D. Vargas, F. R. Fronczek, N. H. Fischer, Phytochemistry 1993, 32, 1483.

- [5] M.-E. Bradette-Hébert, J. Legault, S. Lavoie, A. Pichette, Chem. Pharm. Bull. 2008, 56, 82.
- [6] X.-Y. Liu, H.-K. Zhu, S.-H. Wu, Y.-L. Chen, F.-Y. Liu, P. Wu, J. Zhejiang Univ. (Sci. Ed.) 2007, 34, 661.
- [7] W.-H. Ma, Y. Lu, H. Huang, P. Zhou, D.-F. Chen, Bioorg. Med. Chem. Lett. 2009, 19, 4958.
- [8] C.-M. Sun, R.-F. Toia, J. Nat. Prod. 1993, 56, 953.
- [9] O. F. Smetanina, A. I. Kalinovskii, Y. V. Khudyakova, N. N. Slinkina, M. V. Pivkin, T. A. Kuznetsova, *Chem. Nat. Compd.* 2007, 43, 395.

Received November 28, 2011